Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Clin Immunol ; 261: 110164, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38417765

RESUMO

Multiple vaccines have been approved to control COVID-19 pandemic, with Pfizer/BioNTech (BNT162b2) being widely used. We conducted a longitudinal analysis of the immune response elicited after three doses of the BNT162b2 vaccine in individuals who have previously experienced SARS-CoV-2 infection and in unexperienced ones. We conducted immunological analyses and single-cell transcriptomics of circulating T and B lymphocytes, combined to CITE-seq or LIBRA-seq, and VDJ-seq. We found that antibody levels against SARS-CoV-2 Spike, NTD and RBD from wild-type, delta and omicron VoCs show comparable dynamics in both vaccination groups, with a peak after the second dose, a decline after six months and a restoration after the booster dose. The antibody neutralization activity was maintained, with lower titers against the omicron variant. Spike-specific memory B cell response was sustained over the vaccination schedule. Clonal analysis revealed that Spike-specific B cells were polyclonal, with a partial clone conservation from natural infection to vaccination. Spike-specific T cell responses were oriented towards effector and effector memory phenotypes, with similar trends in unexperienced and experienced individuals. The CD8 T cell compartment showed a higher clonal expansion and persistence than CD4 T cells. The first two vaccinations doses tended to induce new clones rather than promoting expansion of pre-existing clones. However, we identified a fraction of Spike-specific CD8 T cell clones persisting from natural infection that were boosted by vaccination and clones specifically induced by vaccination. Collectively, our observations revealed a moderate effect of the second dose in enhancing the immune responses elicited after the first vaccination. Differently, we found that a third dose was necessary to restore comparable levels of neutralizing antibodies and Spike-specific T and B cell responses in individuals who experienced a natural SARS-CoV-2 infection.


Assuntos
COVID-19 , Vacinas , Humanos , COVID-19/prevenção & controle , Vacina BNT162 , SARS-CoV-2 , Pandemias , Vacinação , Anticorpos Neutralizantes , Anticorpos Antivirais
2.
Eur J Immunol ; 54(4): e2350675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38396108

RESUMO

Human CD4+EOMES+ T cells are heterogeneous and contain Th1-cells, Tr1-cells, and CD4+CTL. Tr1- cells and non-classical EOMES+ Th1-cells displayed, respectively, anti- and pro-inflammatory cytokine profiles, but both expressed granzyme-K, produced IFN-γ, and suppressed T-cell proliferation. Diffusion map suggested a progressive CD4+T-cell differentiation from naïve to cytotoxic cells and identified EOMES+Th1-cells as putative Tr1-cell precursors (pre-Tr1).


Assuntos
Interleucina-10 , Subpopulações de Linfócitos T , Humanos , Linfócitos T Reguladores , Linfócitos T CD4-Positivos , Células Th1 , Diferenciação Celular , Proteínas com Domínio T/genética
3.
Molecules ; 29(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38257371

RESUMO

Gaucher disease (GD) is a rare genetic metabolic disorder characterized by a dysfunction of the lysosomal glycoside hydrolase glucocerebrosidase (GCase) due to mutations in the gene GBA1, leading to the cellular accumulation of glucosylceramide (GlcCer). While most of the current research focuses on the primary accumulated material, lesser attention has been paid to secondary storage materials and their reciprocal intertwining. By using a novel approach based on flow cytometry and fluorescent labelling, we monitored changes in storage materials directly in fibroblasts derived from GD patients carrying N370S/RecNcil and homozygous L444P or R131C mutations with respect to wild type. In L444P and R131C fibroblasts, we detected not only the primary accumulation of GlcCer accumulation but also a considerable secondary increase in GM1 storage, comparable with the one observed in infantile patients affected by GM1 gangliosidosis. In addition, the ability of a trivalent trihydroxypiperidine iminosugar compound (CV82), which previously showed good pharmacological chaperone activity on GCase enzyme, to reduce the levels of storage materials in L444P and R131C fibroblasts was tested. Interestingly, treatment with different concentrations of CV82 led to a significant reduction in GM1 accumulation only in L444P fibroblasts, without significantly affecting GlcCer levels. The compound CV82 was selective against the GCase enzyme with respect to the ß-Galactosidase enzyme, which was responsible for the catabolism of GM1 ganglioside. The reduction in GM1-ganglioside level cannot be therefore ascribed to a direct action of CV82 on ß-Galactosidase enzyme, suggesting that GM1 decrease is rather related to other unknown mechanisms that follow the direct action of CV82 on GCase. In conclusion, this work indicates that the tracking of secondary storages can represent a key step for a better understanding of the pathways involved in the severity of GD, also underlying the importance of developing drugs able to reduce both primary and secondary storage-material accumulations in GD.


Assuntos
Gangliosídeo G(M1) , Doença de Gaucher , Humanos , Fibroblastos , beta-Galactosidase/genética , Corantes , Citometria de Fluxo , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Glucosilceramidas
4.
Chembiochem ; 25(1): e202300730, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37877519

RESUMO

Engineering bioactive iminosugars with pH-responsive groups is an emerging approach to develop pharmacological chaperones (PCs) able to improve lysosomal trafficking and enzymatic activity rescue of mutated enzymes. The use of inexpensive l-malic acid allowed introduction of orthoester units into the lipophilic chain of an enantiomerically pure iminosugar affording only two diastereoisomers contrary to previous related studies. The iminosugar was prepared stereoselectively from the chiral pool (d-mannose) and chosen as the lead bioactive compound, to develop novel candidates for restoring the lysosomal enzyme glucocerebrosidase (GCase) activity. The stability of orthoester-appended iminosugars was studied by 1 H NMR spectroscopy both in neutral and acidic environments, and the loss of inhibitory activity with time in acid medium was demonstrated on cell lysates. Moreover, the ability to rescue GCase activity in the lysosomes as the result of a chaperoning effect was explored. A remarkable pharmacological chaperone activity was measured in fibroblasts hosting the homozygous L444P/L444P mutation, a cell line resistant to most PCs, besides the more commonly responding N370S mutation.


Assuntos
Doença de Gaucher , Glucosilceramidase , Humanos , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Piperidinas/farmacologia , Piperidinas/metabolismo , Mutação , Fibroblastos , Concentração de Íons de Hidrogênio
5.
Org Biomol Chem ; 21(47): 9362-9371, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37975191

RESUMO

N-Acetylgalactosamine-6-sulfatase (GALNS) is an enzyme whose deficiency is related to the lysosomal storage disease Morquio A. For the development of effective therapeutic approaches against this disease, the design of suitable enzyme enhancers (i.e. pharmacological chaperones) is fundamental. The natural substrates of GALNS are the glycosaminoglycans keratan sulfate and chondroitin 6-sulfate, which mainly display repeating units of sulfated carbohydrates. With a biomimetic approach, gold nanoparticles (AuNPs) decorated with simple monosaccharides, sulfated ligands (homoligand AuNPs), or both monosaccharides and sulfated ligands (mixed-ligand AuNPs) were designed here as multivalent inhibitors of GALNS. Among the homoligand AuNPs, the most effective inhibitors of GALNS activity are the ß-D-galactoside-coated AuNPs. In the case of mixed-ligand AuNPs, ß-D-galactosides/sulfated ligands do not show better inhibition than the ß-D-galactoside-coated AuNPs. However, a synergistic effect is observed for α-D-mannosides in a mixed-ligand coating with sulfated ligands that reduced IC50 by one order of magnitude with respect to the homoligand α-D-mannoside-coated AuNPs. SAXS experiments corroborated the association of GALNS with ß-D-galactoside AuNPs. These AuNPs are able to restore the enzyme activity by almost 2-fold after thermal denaturation, indicating a potential chaperoning activity towards GALNS. This information could be exploited for future development of nanomedicines for Morquio A. The recent implications of GALNS in cancer and neuropathic pain make these kinds of multivalent bionanomaterials of great interest towards multiple therapies.


Assuntos
Condroitina Sulfatases , Nanopartículas Metálicas , Ouro , Acetilgalactosamina , Monossacarídeos , Ligantes , Sulfatos , Espalhamento a Baixo Ângulo , Difração de Raios X , Lisossomos
6.
EBioMedicine ; 97: 104819, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37776595

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis and it is characterized by predominant pro-tumor Th2-type inflammation. T follicular helper (Tfh) cells are relevant immunoregulators in cancer, and often correlate with better survival. How the Th2-skewed microenvironment in PDAC modulates the differentiation of Tfh cells and their immunoregulatory function is unknown. METHODS: We carried out high-dimensional flow cytometry and T-cell receptor- and RNA-sequencing, as well as bioinformatics, immunohistochemistry and in vitro mechanistic studies. FINDINGS: We identified Tfh1-, Tfh2-, and Tfh17-like cell clusters in the blood, tumors and tumor-draining lymph-nodes (TDLNs) of chemo-naïve PDAC patients and showed that high percentages of Tfh2 cells within the tumor tissue and TDLNs correlated with reduced patient survival. Moreover, only Tfh2 cells were highly activated and were reduced in frequency in patients who responded to neoadjuvant chemotherapy. RNA-sequencing analysis of immunoglobulin expression showed that tumor and TDLN samples expressed all immunoglobulin (IGH) isotypes apart from IGHE. Consistent with these findings, Tfh2 cells differentiated in vitro by tumor microenvironment-conditioned dendritic cells promoted the production of anti-inflammatory IgG4 antibodies by co-cultured B cells, dependent on IL-13. Moreover, unexpectedly, Tfh2 cells inhibited the secretion of pro-inflammatory IgE, dependent on prostaglandin E2. INTERPRETATION: Our results indicate that in PDAC, highly activated pro-tumor Tfh2 favor anti-inflammatory IgG4 production, while inhibit pro-inflammatory IgE. Thus, targeting the circuits that drive Tfh2 cells, in combination with chemotherapy, may re-establish beneficial anti-tumor Tfh-B cell interactions and facilitate more effective treatment. FUNDING: Research grants from the Italian Association for Cancer Research (AIRC) IG-19119 to MPP and the AIRC Special Program in Metastatic disease: the key unmet need in oncology, 5 per Mille no. 22737 to CB, MF, CD, MR and MPP; the ERA-NET EuroNanoMed III (a collaborative european grant financed by the Italian Ministry of Health, Italy) project PANIPAC (JTC2018/041) to MPP; the Fondazione Valsecchi to SC.


Assuntos
Imunoglobulina G , Neoplasias Pancreáticas , Humanos , Dinoprostona , Imunoglobulina E , Anti-Inflamatórios , RNA , Microambiente Tumoral
7.
Cancers (Basel) ; 15(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37509365

RESUMO

Immunological consequences of endoscopic ultrasound (EUS)-local thermal ablation (LTA) for pancreatic ductal adenocarcinoma (PDAC) have not been extensively assessed. We aimed to explore EUS-LTA effects on the systemic immune response in PDAC. Peripheral blood was collected from 10 treatment-naïve patients with borderline resectable and locally advanced PDAC, randomly allocated to Nab-paclitaxel plus Gemcitabine chemotherapy (CT-arm, n = 5) or EUS-LTA with HybridTherm Probe plus CT (HTP + CT-arm, n = 5). Twenty healthy donors were included as controls. Flow-cytometry and multiplex assays were used to profile immune cell subsets and measure serum cytokines/chemokines, respectively. At baseline, PDAC patients showed increased circulating monocytes and lower circulating lymphocytes and CD19+ B cells counts compared to healthy controls. After 4 months, CT induced decrease of B regulatory cells, CD4+ cytotoxic T cells and IL-1ß. The addition of EUS-HTP to CT selectively decreased the serum levels of APRIL/TNFSF13 as well as T regulatory cells, total, classic and inflammatory monocytes. Serum levels of APRIL/TNFSF13 and total, classic and inflammatory monocytes counts at baseline were associated with worse overall survival. EUS-HTP has the potential to selectively impact on immune cells and cytokines associated with poor outcomes in PDAC.

8.
J Crohns Colitis ; 17(12): 1988-2001, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37462681

RESUMO

IFNγ-producing ex-Th17 cells ['Th1/17'] were shown to play a key pathogenic role in experimental colitis and are abundant in the intestine. Here, we identified and characterised a novel, potentially colitogenic subset of Th17 cells in the intestine of patients with Crohn's disease [CD]. Human Th17 cells expressing CCR5 ['pTh17'] co-expressed T-bet and RORC/γt and produced very high levels of IL-17, together with IFN-γ. They had a gene signature of Th17 effector cells and were distinct from established Th1/17 cells. pTh17 cells, but not Th1/17 cells, were associated with intestinal inflammation in CD, and decreased upon successful anti-TNF therapy with infliximab. Conventional CCR5[-]Th17 cells differentiated to pTh17 cells with IL-23 in vitro. Moreover, anti-IL-23 therapy with risankizumab strongly reduced pTh17 cells in the intestine. Importantly, intestinal pTh17 cells were selectively activated by adherent-invasive Escherichia coli [AIEC], but not by a commensal/probiotic E. coli strain. AIEC induced high levels of IL-23 and RANTES from dendritic cells [DC]. Intestinal CCR5+Th1/17 cells responded instead to cytomegalovirus and were reduced in ulcerative colitis [UC], suggesting an unexpected protective role. In conclusion, we identified an IL-23-inducible subset of human intestinal Th17 cells. pTh17 cells produced high levels of pro-inflammatory cytokines, were selectively associated with intestinal inflammation in CD, and responded to CD-associated AIEC, suggesting a key colitogenic role.


Assuntos
Doença de Crohn , Infecções por Escherichia coli , Humanos , Doença de Crohn/patologia , Escherichia coli , Células Th17/patologia , Inibidores do Fator de Necrose Tumoral , Intestinos/patologia , Inflamação/patologia , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/patologia , Interleucina-23 , Mucosa Intestinal/patologia , Aderência Bacteriana
9.
Clin Immunol ; 254: 109684, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37451415

RESUMO

BACKGROUND: SARS-CoV-2 infections have been associated with the onset of thyroid disorders like classic subacute thyroiditis (SAT) or atypical SAT upon severe COVID disease (COV-A-SAT). Little is known about thyroid anti-viral immune responses. OBJECTIVES: To define the role of T-cells in COV-A-SAT. METHODS: T-cells from COV-A-SAT patients were analyzed by multi-dimensional flow cytometry, UMAP and DiffusionMap dimensionality reduction and FlowSOM clustering. T-cells from COVID-naïve healthy donors, patients with autoimmune thyroiditis (ATD) and with SAT following COVID vaccination were analyzed as controls. T-cells were analyzed four and eight months post-infection in peripheral blood and in thyroid specimen obtained by ultrasound-guided fine needle aspiration. SARS-COV2-specific T-cells were identified by cytokine production induced by SARS-COV2-derived peptides and with COVID peptide-loaded HLA multimers after HLA haplotyping. RESULTS: COV-A-SAT was associated with HLA-DRB1*13 and HLA-B*57. COV-A-SAT patients contained activated Th1- and cytotoxic CD4+ and CD8+ effector cells four months post-infection, which acquired a quiescent memory phenotype after eight months. Anti-SARS-CoV-2-specific T-cell responses were readily detectable in peripheral blood four months post-infection, but were reduced after eight months. CD4+ and CD8+ tissue-resident memory cells (TRM) were present in the thyroid, and circulating CXCR3+T-cells identified as their putative precursors. SARS-CoV-2-specific T-cells were enriched in the thyroid, and acquired a TRM phenotype eight months post-infection. CONCLUSIONS: The association of COV-A-SAT with specific HLA haplotypes suggests a genetic predisposition and a key role for T-cells. COV-A-SAT is characterized by a prolonged systemic anti-viral effector T-cell response and the late generation of COVID-specific TRM in the thyroid target tissue.


Assuntos
COVID-19 , Glândula Tireoide , Humanos , SARS-CoV-2 , RNA Viral , Fenótipo , Anticorpos
10.
Org Lett ; 25(31): 5833-5837, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37515782

RESUMO

A novel stereoselective synthetic approach to pentahydroxyazepane iminosugars is described. The strategy relies on a key osmium-catalyzed aminohydroxylation reaction of allylic alcohols obtained via addition of vinylmagnesium bromide to a d-mannose-derived aldehyde, which forms the new C-N bond with complete regio- and stereocontrol according to the tethering approach. Subsequent intramolecular reductive amination afforded the desired azepanes. This method represents the first application of the osmium-catalyzed tethered aminohydroxylation reaction to the synthesis of iminosugars.

11.
Chemistry ; 29(19): e202203841, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36598148

RESUMO

Piperidine-based photoswitchable derivatives have been developed as putative pharmacological chaperones for glucocerebrosidase (GCase), the defective enzyme in Gaucher disease (GD). The structure-activity study revealed that both the iminosugar and the light-sensitive azobenzene are essential features to exert inhibitory activity towards human GCase and a system with the correct inhibition trend (IC50 of the light-activated form lower than IC50 of the dark form) was identified. Kinetic analyses showed that all compounds are non-competitive inhibitors (mixed or pure) of GCase and the enzyme allosteric site involved in the interaction was identified by means of MD simulations. A moderate activity enhancement of mutant GCase assessed in GD patients' fibroblasts (ex vivo experiments) carrying the most common mutation was recorded. This promising observation paves the way for further studies to improve the benefit of the light-to-dark thermal conversion for chaperoning activity.


Assuntos
Doença de Gaucher , Glucosilceramidase , Humanos , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Dobramento de Proteína , Fibroblastos/metabolismo , Mutação , Inibidores Enzimáticos/farmacologia
12.
Eur J Immunol ; 53(5): e2149775, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36653901

RESUMO

Type 1 regulatory (Tr1) T cells are currently defined all T cells with regulatory functions that lack FOXP3 expression and produce IL-10. Tr1 cells are heterogeneous, and the different reported properties of Tr1-cell populations have caused some confusion in the field. Moreover, understanding the role of Tr1 cells in immune-mediated diseases has been hampered by the lack of a lineage-defining transcription factor. Several independent studies indicated recently that the transcription factor Eomesodermin (EOMES) could act as a lineage-defining transcription factor in a population of IL-10 and IFN-γ co-producing Tr1-like cells, since EOMES directly induces IFN-γ and cytotoxicity, enhances IL-10, and antagonizes alternative T-cell fates. Here, we review the known properties of EOMES+ Tr1-like cells. They share several key characteristics with other Tr1 cells (i.e., "Tr1-like"), namely high IL-10 production, cytotoxicity, and suppressive capabilities. Notably, they also share some features with FOXP3+ Tregs, like downregulation of IL-7R and CD40L. In addition, they possess several unique, EOMES-dependent features, that is, expression of GzmK and IFN-γ, and downregulation of type-17 cytokines. Published evidence indicates that EOMES+ Tr1-like cells play key roles in graft-versus-host disease, colitis, systemic autoimmunity and in tumors. Thus, EOMES+ Tr1-like cells are key players of the adaptive immune system that are involved in several different immune-mediated diseases.


Assuntos
Interleucina-10 , Linfócitos T Reguladores , Interleucina-10/metabolismo , Diferenciação Celular , Fatores de Transcrição Forkhead/metabolismo , Biologia
13.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35890122

RESUMO

Pharmaceutical chaperones (PCs) are small compounds able to bind and stabilize misfolded proteins, allowing them to recover their native folding and thus their biological activity. In particular, lysosomal storage disorders (LSDs), a class of metabolic disorders due to genetic mutations that result in misfolded lysosomal enzymes, can strongly benefit from the use of PCs able to facilitate their translocation to the lysosomes. This results in a recovery of their catalytic activity. No PC for the GCase enzyme (lysosomal acid-ß-glucosidase, or glucocerebrosidase) has reached the market yet, despite the importance of this enzyme not only for Gaucher disease, the most common LSD, but also for neurological disorders, such as Parkinson's disease. This review aims to describe the efforts made by the scientific community in the last 7 years (since 2015) in order to identify new PCs for the GCase enzyme, which have been mainly identified among glycomimetic-based compounds.

14.
Molecules ; 27(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35807262

RESUMO

GM1 gangliosidosis is a rare lysosomal disease caused by the deficiency of the enzyme ß-galactosidase (ß-Gal; GLB1; E.C. 3.2.1.23), responsible for the hydrolysis of terminal ß-galactosyl residues from GM1 ganglioside, glycoproteins, and glycosaminoglycans, such as keratan-sulfate. With the aim of identifying new pharmacological chaperones for GM1 gangliosidosis, the synthesis of five new trihydroxypiperidine iminosugars is reported in this work. The target compounds feature a pentyl alkyl chain in different positions of the piperidine ring and different absolute configurations of the alkyl chain at C-2 and the hydroxy group at C-3. The organometallic addition of a Grignard reagent onto a carbohydrate-derived nitrone in the presence or absence of a suitable Lewis Acid was exploited, providing structural diversity at C-2, followed by the ring-closure reductive amination step. An oxidation-reduction process allowed access to a different configuration at C-3. The N-pentyl trihydroxypiperidine iminosugar was also synthesized for the purpose of comparison. The biological evaluation of the newly synthesized compounds was performed on leucocyte extracts from healthy donors and identified two suitable ß-Gal inhibitors, namely compounds 10 and 12. Among these, compound 12 showed chaperoning properties since it enhanced ß-Gal activity by 40% when tested on GM1 patients bearing the p.Ile51Asn/p.Arg201His mutations.


Assuntos
Gangliosidose GM1 , Gangliosidose GM1/tratamento farmacológico , Gangliosidose GM1/genética , Humanos , Lisossomos , Chaperonas Moleculares/genética , Mutação , beta-Galactosidase/química
15.
Front Immunol ; 13: 866558, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711453

RESUMO

Intracranial aneurysms (IAs) are very rare in children, and the characteristics of the T-cells in the IA wall are largely unknown. A comatose 7-years-old child was admitted to our center because of a subarachnoid hemorrhage due to a ruptured giant aneurysm of the right middle cerebral artery. Two days after the aneurysm clipping the patient was fully awake with left hemiparesis. T-cells from the IA wall and from peripheral blood of this patient were analyzed by multi-dimensional flow cytometry. Unbiased analysis, based on the use of FlowSOM clustering and dimensionality reduction technique UMAP, indicated that there was virtually no overlap between circulating and tissue-infiltrating T-cells. Thus, naïve T-cells and canonical memory T-cells were largely restricted to peripheral blood, while CD4-CD8-T-cells were strongly enriched in the IA wall. The unique CD4+, CD8+ and CD4-CD8-T-cell clusters from the IA wall expressed high levels of CCR5, Granzyme B and CD69, displaying thus characteristics of cytotoxic and tissue-resident effector cells. Low Ki67 expression indicated that they were nevertheless in a resting state. Among regulatory T-cell subsets, Eomes+Tr1-like cells were strongly enriched in the IA wall. Finally, analysis of cytokine producing capacities unveiled that the IA wall contained poly-functional T-cells, which expressed predominantly IFN-γ, TNF and IL-2. CD4+T-cells co-expressed also CD40L, and produced some IL-17, GM-CSF and IL-10. This report provides to our knowledge the first detailed characterization of the human T-cell compartment in the IA wall.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Hemorragia Subaracnóidea , Linfócitos T CD8-Positivos/metabolismo , Criança , Humanos , Aneurisma Intracraniano/etiologia , Hemorragia Subaracnóidea/metabolismo , Subpopulações de Linfócitos T
16.
Life Sci Alliance ; 5(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35724271

RESUMO

We describe a multi-step high-dimensional (HD) flow cytometry workflow for the deep phenotypic characterization of T cells infiltrating metastatic tumor lesions in the liver, particularly derived from colorectal cancer (CRC-LM). First, we applied a novel flow cytometer setting approach based on single positive cells rather than fluorescent beads, resulting in optimal sensitivity when compared with previously published protocols. Second, we set up a 26-color based antibody panel designed to assess the functional state of both conventional T-cell subsets and unconventional invariant natural killer T, mucosal associated invariant T, and gamma delta T (γδT)-cell populations, which are abundant in the liver. Third, the dissociation of the CRC-LM samples was accurately tuned to preserve both the viability and antigenic integrity of the stained cells. This combined procedure permitted the optimal capturing of the phenotypic complexity of T cells infiltrating CRC-LM. Hence, this study provides a robust tool for high-dimensional flow cytometry analysis of complex T-cell populations, which could be adapted to characterize other relevant pathological tissues.


Assuntos
Fígado , Subpopulações de Linfócitos T , Citometria de Fluxo/métodos , Fluxo de Trabalho
17.
Chembiochem ; 23(11): e202200077, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35322924

RESUMO

The synthesis of five new multivalent derivatives of a trihydroxypiperidine iminosugar was accomplished through copper catalyzed alkyne-azide cycloaddition (CuAAC) reaction of an azido ending piperidine and several propargylated scaffolds. The resulting multivalent architectures were assayed as inhibitors of lysosomal GCase, the defective enzyme in Gaucher disease. The multivalent compounds resulted in much more potent inhibitors than a parent monovalent reference compound, thus showing a good multivalent effect. Biological investigation of these compounds as pharmacological chaperones revealed that the trivalent derivative (12) gives a 2-fold recovery of the GCase activity on Gaucher patient fibroblasts bearing the L444P/L444P mutations responsible for neuropathies. Additionally, a thermal denaturation experiment showed its ability to impart stability to the recombinant enzyme used in therapy.


Assuntos
Doença de Gaucher , Glucosilceramidase , Inibidores Enzimáticos/farmacologia , Fibroblastos , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Glucosilceramidase/genética , Glucosilceramidase/uso terapêutico , Humanos , Mutação
18.
Org Biomol Chem ; 20(8): 1637-1641, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107482

RESUMO

Light-switchable inhibitors of the enzyme ß-glucocerebrosidase (GCase) have been developed by anchoring a specific azasugar to a dihydroazulene or an azobenzene responsive moiety. Their inhibitory effect towards human GCase, before and after irradiation are reported, and the effect on thermal denaturation of recombinant GCase and cytotoxicity were studied on selected candidates.


Assuntos
Compostos Azo/farmacologia , Azulenos/farmacologia , Inibidores Enzimáticos/farmacologia , Glucosilceramidase/antagonistas & inibidores , Compostos Azo/síntese química , Compostos Azo/química , Azulenos/síntese química , Azulenos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Glucosilceramidase/metabolismo , Humanos , Luz , Estrutura Molecular , Processos Fotoquímicos
19.
J Org Chem ; 86(18): 12745-12761, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34469155

RESUMO

We report a straightforward synthetic strategy for the preparation of trihydroxypiperidine azasugars decorated with lipophilic chains at both the nitrogen and the adjacent carbon as potential inhibitors of the lysosomal enzyme glucocerebrosidase (GCase), which is involved in Gaucher disease. The procedure relies on the preparation of C-erythrosyl N-alkylated nitrones 10 through reaction of aldehyde 8 and primary amines 13 followed by oxidation of the imines formed in situ with the methyltrioxorhenium catalyst and urea hydrogen peroxide. The addition of octylMgBr to nitrone 10e provided access to both epimeric hydroxylamines 21 and 22 with opposite configuration at the newly created stereocenter in a stereodivergent and completely stereoselective way, depending on the absence or presence of BF3·Et2O. Final reductive amination and acetonide deprotection provided compounds 14 and 15 from low-cost d-mannose in remarkable 43 and 32% overall yields, respectively, over eight steps. The C-2 R-configured bis-alkylated trihydroxypiperidine 15 was the best ligand for GCase (IC50 = 15 µM), in agreement with MD simulations that allowed us to identify the chair conformation corresponding to the best binding affinity.


Assuntos
Doença de Gaucher , Glucosilceramidase , Aminação , Doença de Gaucher/tratamento farmacológico , Humanos , Oxirredução , Piperidinas
20.
Eur Heart J ; 42(28): 2780-2792, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34104945

RESUMO

AIMS: Increased shedding of extracellular vesicles (EVs)-small, lipid bilayer-delimited particles with a role in paracrine signalling-has been associated with human pathologies, e.g. atherosclerosis, but whether this is true for cardiac diseases is unknown. METHODS AND RESULTS: Here, we used the surface antigen CD172a as a specific marker of cardiomyocyte (CM)-derived EVs; the CM origin of CD172a+ EVs was supported by their content of cardiac-specific proteins and heart-enriched microRNAs. We found that patients with aortic stenosis, ischaemic heart disease, or cardiomyopathy had higher circulating CD172a+ cardiac EV counts than did healthy subjects. Cellular stress was a major determinant of EV release from CMs, with hypoxia increasing shedding in in vitro and in vivo experiments. At the functional level, EVs isolated from the supernatant of CMs derived from human-induced pluripotent stem cells and cultured in a hypoxic atmosphere elicited a positive inotropic response in unstressed CMs, an effect we found to be dependent on an increase in the number of EVs expressing ceramide on their surface. Of potential clinical relevance, aortic stenosis patients with the highest counts of circulating cardiac CD172a+ EVs had a more favourable prognosis for transcatheter aortic valve replacement than those with lower counts. CONCLUSION: We identified circulating CD172a+ EVs as cardiac derived, showing their release and function and providing evidence for their prognostic potential in aortic stenosis patients.


Assuntos
Vesículas Extracelulares , MicroRNAs , Infarto do Miocárdio , Humanos , Hipóxia , Miocárdio , Miócitos Cardíacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...